- 電話:021-69515711
- 手機:13818065015
- 傳真:021-69515712
- 1049485
- 8459743
- 1993509414
- :renrimarket
- market@renri.com.cn
REN系列智能化輻射探頭均可和REN300、REN300A、REN300B系列主機配套使用,也可以單獨配套RenRiArea輻射區域監測軟件使用。且具有RS485/RS232的通訊能力。所有探頭均可單獨外接報警燈,在超閾值的情況下就地給出聲光報警。 1、測量射線類型:X、γ射線2、探測器:Φ30×
REN500T是手持式儀表可用來監測X、γ輻射劑量率。用于各種γ輻射場或環境γ輻射的監測工作。儀器配有伸縮長桿,可用于測量人員不易到達或有較強放射性存在的場所,為使用人員提供有效保護。此外通過配套的RenRiRate劑量率管理軟件可將存儲
本報警儀由REN300A在線輻射安全報警儀和REN-3He-N中子探頭和REN-GM-L X、伽瑪探頭組成。該輻射報警裝置是采用特殊設計的前置放大電路,具有靈敏度高、操作方便、自動顯示、數據存儲和超閾值報警等特點,能實時給出x射線、γ射線、中子射線的輻射劑量率?紤]到現場操作、應急快速響應的需要,主
放射工作人員個人劑量委托監測服務 依據《GB18871-2002電離輻射防護與輻射源安全基本標準》和《GBZ128-2002職業性外照射個人監測規范》的要求,以熱釋光個人劑量計作為監測手段,為放射工作人員提供個人劑量委托監測服務,并為企業或衛生行政部
REN500A型智能化х、γ輻射儀采用高靈敏的閃爍晶體作為探測器,反應速度快,該儀器具有較寬的劑量率測量范圍。 該儀器除能測高能、低能γ射線外,還能對低能X射線進行準確的測量,具有良好的能量響應特性。此外通過配套的RenRiRate劑量率管理軟件可將
REN300A在線輻射安全報警儀是一種新型的x-γ輻射連續監測報警裝置,它采用特殊設計的前置放大電路,具有靈敏度高、操作方便、自動顯示和超閾值報警等特點,能實時給出xγ輻射劑量率?紤]到現場操作、應急快速響應的需要,主機安裝在輻射現場,實現實時監測與就地報警,通過RS485通訊實現總控制室自動監控。
一、長袖、半袖、無袖射線防護服 1、防護鉛皮:柔軟防護材料; 2、防護性能佳:鉛分布均勻;提供0.35/0.5mmPb鉛當量; 耐磨、易清洗表面材料 3、結構設計:采用多層材料制作,加上專業的人性化結構設計,讓您穿戴舒適; 4、 精密制作工藝:做工精
REN500B型智能化х-γ輻射儀是監測各種放射性工作場所х、γ射線輻射劑量率的專用儀器。該儀器具有較大的劑量率測量范圍和能量響應特性。此外通過配套的RenRiRate劑量率管理軟件可將存儲的數據讀出后分析。該儀器廣泛用于衛生、環保、冶金、石油、化工、醫院、加速器、工業探傷
放射性測量方法
2008/12/5 13:33:00
放射性同位素發出的射線與物質相互作用,會直接或間接地產生電離和激發等效應,利用這些效應,可以探測放射性的存在、放射性同位素的性質和強度。用來記錄各種射線的數目,測量射線強度,分析射線能量的儀器統稱為探測器(probe)。測量射線有各種不同的儀器和方法,正如麥凱在1953年所說:“每當物理學家觀察到一種由原子粒子引起的新效應,他都試圖利用這種新效應制成一種探測器”。一般將探測器分為兩大類,一是“徑跡型”探測器,如照像乳膠、云室、氣泡室、火花室、電介質粒子探測器和光色探測器等,它們主要用于高能粒子物理研究領域。二是“信號型”探測器,包括電離計數器,正比計數器,蓋革計數管,閃爍計數器,半導體計數器和契倫科夫計數器等,這些信號型探測器在低能核物理、輻射化學、生物學、生物化學和分子生物學以及地質學等領域越來越得到廣泛地應用,尤其是閃爍計數器是生物化學和分子生物學研究中的必備儀器之一。
一、閃爍型探測器
1.探測原理
閃爍型探測器由閃爍體,光電倍增管,電源和放大器-分析器-定標器系統組成,現代閃爍探測器往往配備有計算機系統來處理測量結果。當射線通過閃爍體時,閃爍體被射線電離、激發,并發出一定波長的光,這些光子射到光電倍增管的光陰極上發生光電效應而釋放出電子,電子流經電倍增管多級陰極線路逐級放大后或為電脈沖,輸入電子線路部分,而后由定標器記錄下來。光陰極產生的電子數量與照射到它上面的光子數量成正比例,即放射性同位素的量越多,在閃爍體上引起閃光次數就越多,從而儀器記錄的脈沖次數就越多。測量的結果可用計數率,即射線每分鐘的計數次數(簡寫為cpm)表示,現代計數裝置通?梢酝瑫r給出衰變率,即射線每分鐘的衰變次數(簡寫dpm)、計數效率(E)、測量誤差等數據,閃爍探測器是近幾年來發展較快,應用最廣泛的核探測器,它的核心結構之一是閃爍體。閃爍體在很大程度上決定了一臺計數器的質量。
2.閃爍體
閃爍體是一類能吸收能量,并能在大約一微秒或更短的時間內把所吸收的一部分能量以光的形式再發射出來的物質。閃爍體分為無機閃爍體和有機閃爍體兩大類,閃爍體必需具備的性能是:對自身發射的光子應是高度透明的。閃爍體吸收它自己發射的一部分光子所占的比例隨閃爍材料而變化。無機閃爍體[如Nal(Tl),ZnS(Ag)]幾乎是100%透明的,有機閃爍體(如蒽,塑料閃爍體,液體閃爍體)一般來說透明性較差,F在常使用的幾種閃爍體是:⑴無機晶體,主要是含雜質或不含雜質的堿金屬碘化物;⑵有機晶體,在都是未取代的或取代的芳香碳氫化合物;⑶液態的有機溶液,即液體閃爍體;⑷塑料溶液中的有機溶液,即固溶閃爍體。
3.光電倍增管
它是閃爍探測器的最重要部件之一。其組成成份是光陰極和倍增電極,光陰極的作用是將閃爍體的光信號轉換成電信號,倍增電極則充當一個放大倍數大于106的放大器,光陰極上產生的電子經加速作用飛到倍增電極上,每個倍增電極上均發生電子的倍增現象,倍增極的培增系數與所加電壓成正比例,所以光電倍增管的供電電源必須非常穩定,保證倍增系數的變化最小,在沒有入射的射線時,光電倍增管自身由于熱發射而產生的電子倍增稱為暗電流。用光電倍增管探測低能核輻射時,必須減小暗電流。保持測量空間環境內較低的室溫,是減小光電倍培管暗電流的有效方法。
二、晶體閃爍計數(crystal scintillation counting)
1.探測原理
γ射線不同于α和β粒子,它類似于光和其它電磁輻射,在與物質作用時不直接產生電離,而是按下述三種機制之一被吸收:光電效應,康譜頓效應和生成電子對。在光電效應中,每個光子將保持它的全部能量直到與吸收物質內原子的一個軌道電子相互作用為止。在此過程中,光子把全部能量給予電子,電子以高速度射出,光子就不再存在,發射出的電子稱為光電子,光電子按β粒子同樣的方式,將其能量電離,其它原子則消耗掉。在康普頓效應中,能量為hv的入射γ光子,與吸收物質內原子的一個軌道電子相互作用。在該過程中,光子把它的能量給予軌道電子,使電子射出,隨后帶有較小能量hv''的光子按能量和動量兩者都守恒的形式被“散射”。射出的電子稱為反沖電子,又叫康普頓電子?灯疹D電子象光電效應中的情況一樣,按與β粒子相同的方式消散它的能量,散射光子進一步通過光電或康普頓過程被吸收。電子對生成時,某些入射光子能量按照愛因斯坦方程轉化為質量:E=mc2 式中E為er(樂格)表示的能量,m為以g表示的質量,c為光速,以cm/s為單位,入射的γ光子在吸收物質的一個原子的核場中以一種未知的方式湮滅,隨后產生兩個粒子,一個負電子和一個正電子,正電子只存在一個很短的時間,一旦它減慢,它就被吸收物質中的一個電子所中和,這一湮滅過程導致一對γ光子的產生,其每一個光子能量為0.51MeV,最終通過光電效應康普頓效應吸收。γ射線由于沒有質量,具有很強的穿透性,而且最易被高電子密度的物質所吸收,如鉛。具有高原子序數Z的原子直接與高電子密度有關。就探測器而言,某些無機鹽能有效地吸收γ光子,發射出強度正比于所吸收γ射線能量的光子。例如,鉈激活的碘化鈉,由于碘原子的原子序數Z高,并且有較高的密度(比重3.67),而且每吸收單位能量的光子產額高,晶體的光透性也好,用來探測γ射線,效率較高。
2.探測裝置
一個供探測γ光子用的固體晶體裝置包括一個“密閉的”鉈激活碘化鈉晶體,安放在光電倍增管的表面上。“密閉的”晶體上是一塊固態圓筒狀的鉈激活碘化鈉,其頂部和四周都是用鋁層包裹以避免光和濕氣,因為碘化鈉晶體易吸潮,為改善反射性,碘化鈉晶體用一玻璃片密封,并同光電倍增管的表面直接接觸,其間加些硅油以達到光學匹配,整個裝置是不透光的。γ射線易于穿透晶體外表的鋁層,然后被高效的晶體所吸收,晶體發射出其能量與入射γ射線能量成比例的可見光。接著,光電倍增管將可見光能量轉換為電脈沖,各種能量轉換過程(即從γ光子發射直到產生一個電脈沖)成比例的性質,以及γ光子的吸收性質,保證γ放射性同位素可通過晶體閃爍得以計數,并定量。晶體γ計數器通常設計成既能有效地探測光電效應,又能有效地探測康普頓效應。但探測效應隨著光子能量的增大而減小,對于大多數市售γ計數器所用碘化鈉晶體的尺寸來說,光電效應在低光子能量,例如在低于400keV時占主要地位,而在1MeV附近即以康普頓效應為主。在這兩種能量之間,兩種效應幾乎以相等的頻率發生,由于所用的晶體尺寸較小,難以探測到電子對的生成。另外,在塑料溶劑(如聚乙烯甲苯)中加入閃爍體(如POPOP或TP),做成片狀,可用來探測能量較高的β射線,如32P放出的1.71MeV的高能量β射線。最早使用的硫化鋅晶體較薄,內含微量的微量的銀作為激活劑,可用來探測α射線。
3.晶體閃爍計數的定性、定量分析
放射性同位素鉻主要按電子俘獲方式衰變,其半衰期為27.8天,由于電子俘獲,原子的原子序數減少1,因而變成一種釩的同位素,按電子俘獲方式衰變至基態釩發生的頻率為91%,并導致隨后發射-5keV的弱X射線,此X射線一般難以探測,因為從樣品中出來的 X射線在其能穿入碘化鈉晶體之前已被吸收掉了。51Cr有9%的機會通過電子俘獲衰變到釩的一種受激核態,并立刻通過發射-320keV的γ射線衰變至穩定的基態,這種γ射線易于探測。用晶體閃爍計數器來觀察51Cr,在320keV處觀察到一個尖銳的峰,稱為光電峰,這是γ光子能量以光電效應損耗的結果,但并非所有能量都以此過程損耗,所以在較低能量時光子能量由于康普頓效應損耗而出現一連串較寬不明顯的峰,從光電峰下到谷的對側稱為康普頓邊緣。能量低于康普頓區的擴散峰,是由于γ射線對吸收物質的反散射引起的,散射光子的能量低。各種γ射線放射性同位素都有其特征的光電峰,利用特征光電峰,可對各種γ射線放射性同位素進行定性和鑒別。對各種樣品的γ射線計數測量是將測得的計數率與總放射性強度或標準源的計數率進行比較,可以算出樣品放射性占總放射性或標準源的百分比,從而獲得樣品放射性強度。
4.儀器性能的評價
晶體閃爍計數器現在基本都做成井型或圓柱型,用碘化鈉(鉈)作為閃爍體,探測γ射線,所以又把探測γ射線的晶體閃爍計數器稱為 γ計數器(γ-counte-r)。γ計數器的性能一般是根據其對137Cs的662keV光電峰的分辯能力而加以比較的,探測系統的分辯率是一光電峰展寬程度的量度,定義為最大峰高的一半處的峰寬度(用keV為單位)除以該光電峰的最大脈沖高度(用keV為單位)再乘以100。如果光電倍增管工作在最佳狀態時,分辯率能達到7%。但是,通常的井形晶體計數器由于光學性質較差,其分辯率也較差,其分辯率值約為12%。γ射線能量越高,光電峰的分辯率也會有所改善。
三、液體閃爍計數(Liquifd scintillation counting)
液體閃爍計數所用的閃爍體是液態,即將閃爍體溶解在適當的溶液中,配制成為閃爍液,并將待測放射性物質放在閃爍液中進行測量。應用液體閃爍計數可達到4π立體角的優越幾何測量條件,而且源的自吸收也可以忽略,對于能量低,射程短、易被空氣和其它物質吸收的α射線和低能β射線(如3H和
1.探測機理
閃爍液產生光子的過程是,從放射源發出的射線能理,首先被溶劑分子吸收,使溶劑分子激發。這種激發能量在溶劑內傳播時,即傳遞給閃爍體(溶質),引起閃爍體分子的激發,當閃爍體分子回到基態時就發射出光子,該光子透過透明的閃閃爍液及樣品的瓶壁,被光電倍增管的光陰極接收,繼而產生光電子并通過光電倍增管的倍增管的位增極放大,然后被陽極接收形成電脈沖,完成了放射能→光能→電能的轉換。
2.閃爍液
液體閃爍計數系統作用的閃爍溶液,是指閃爍瓶中除放射性被測樣品之外的其它組分,主要是有機溶劑和溶質(閃爍體),有時為了樣品的制備或提高計數效率的需要,還加入其它添加劑。 ⑴溶劑:從β源放射β射線到發射能被肖陰極接收的光婦的這一系列能量轉移環節中,能量轉移效率是很低的,只有少部分放射能量被利用來發射光子,其中放射源與溶劑之間,能量轉移效率大約為5 ̄10%。對溶劑的選擇,主要視其對閃爍體的溶介度和將放射能轉移給閃爍體的效率而定。如果以一定濃度的閃爍體在甲苯溶液中產生的脈沖高度為100%,那么,凡能產生80%以上的脈沖高度的都定為溶劑,能使脈沖高度隨其濃度上升而逐漸減小的稱為稀釋液,而在濃度很低時就能引起脈沖高度顯著下降的叫淬滅劑。在液體閃爍計數系統中,一個好的溶劑應滿足下列條件:①對閃爍體的溶介度高;②對放射源的轉移效率高;③對閃爍發射的光子透明度高;④在無論有無助溶劑的幫助下都可以溶介放射性樣品;⑤在計數器的工作溫度下來結冰;⑥能夠形成均相的測量溶液。一般認為,烷基苯是最好的溶劑,如甲苯,二甲苯。此外,苯甲醚也是比較好的溶劑。另外,對于含水量較多的樣品,采用1,4-二氧不作為溶劑,因為該有機化合物的極性較大,既能很好地溶介閃爍體又可溶介含水量較多的樣品,能改善計數效率,缺點是價格昂貴,冰點高,久放后產生淬滅作用很強的過氧化物,必須經純化才能使用,并應加入 0.001%的二乙基二硫代氨基甲酸鈉或丁基氫氧基甲苯(BHT),
以抑制純化的二氧六環變質。溶劑在閃爍溶液中約占99%,因此,它的純度對閃爍液的品質是很大的影響因素。溶劑中不發光的雜質、氧和水的含量多少,都關系到淬滅程度。原則上講,溶劑應具有閃爍純,即不含或很少含有影響閃爍計數的淬滅成分。實際證明,“分析純”試劑可以不經純化而直接使用。
⑵閃爍液:在液體閃爍計數系統中,閃爍體又稱熒光體,是閃爍液的溶質,它的很多,根據其熒光特性及作用,可分為兩類,即第一閃爍和第二閃爍體。
①第一閃爍體:(初級閃爍體):常用的第一閃爍體:對聯三苯(TP):化學結構 它是最早使用的閃爍體之一。它的計數率高,價格比較便宜,但是,在低溫或含水溶液介度不高。2,5-二苯惡唑(PPO):化學結構 它是目前普遍使用的閃爍體,能很好地溶介在常用的溶劑中,在含水的情況下也是如此,在甲苯中的溶介度達
常用的第二閃爍體有:1,4,雙2(5苯基惡唑)苯(POPOP)它的溶介度小,在甲苯系統為
閃爍液中除了溶劑,閃爍體之外,有時還添加一些其它成分。為了增加閃爍液對含水樣品的溶解能力,需加入助溶劑;為了改善計數效率,則加入抗淬滅劑。甲苯、二甲苯等有機溶劑極性很小,對水的溶介能力較差。當樣品含水較多時,即使樣品體積不大,也很難和甲苯中二甲苯互溶為透明的均相學府。有時樣品的含水量雖然不大,但它的放射性水平很低,為了在較短的測量時間獲得符合統計誤差要求的計數往往需要增加樣品的體積,這就等于增加了含水量,這樣的樣品也不能很好地和甲苯或二甲苯互溶,為此,要加入一定量的極性較大的有機溶劑,如甲醇,乙醇,乙二醇乙醚等,這些溶劑在非極性溶劑和水分子之間起著橋梁作用,既能和甲苯、二甲苯互溶,又能和水互溶,達到增加含水樣品在閃爍液內的溶解度的目的,所以稱之為助溶劑。\par 助溶劑的淬滅作用較大要限制其用量,因而,可容納的含水量也是有限的。其中乙二醇乙醚的極性大且學淬滅作用小,是常用的助溶劑?勾銣鐒┩ǔS迷趯亢艽蟮臉悠窚y量或采用二氧六環作溶劑時,因為這種閃爍液淬滅作用大,為改善計數效率,加入抗淬滅劑萘是十分重要的。萘也是一種熒光物質,它可以抵消一部分淬滅作用,但是萘不能和對聯三苯合用,尤其是在甲苯、二甲苯溶劑中,否則計數效率很低。液體閃爍計數器中,閃爍液的最佳體積可以在一定范圍內有所變化,吸要能獲得較高的計數效率,就應該采用較少的體積,尤其對于3H樣品來說,較小體積的閃爍液還可以減少本底計數(大約0.5cpm/ml閃爍液),減少樣品的自吸收。如果當樣品中含有淬滅劑成分時,增加閃爍液的體積,可以經稀釋作用來減少淬滅。
3.探測裝置
在液體閃爍計數中引用非常靈敏的光電倍增管,對于探測穿透力低的α射線和低能量的β射線(如3H,
雙標記樣品,可通過雙道液體閃爍計數器同時測定。陽極在單位時間內產生脈沖電壓的數量,與閃爍瓶內放射性同位素的多少以及同位素衰變率成線性關系,與樣品內的放射性強度成正比,這是液體閃爍測量的定量基礎。例如,在知道液體閃爍計數器探測效率的前提下,通過對某種放射性樣品進行測定,可以求得該樣品中的放射性強度為多少微居里或多少貝柯勒爾。
4.雙標記同位素測量的應用
液體閃爍計數器特點之一是能作雙同位素分析,配備兩個或三個以上獨立的脈沖高度分析器的多道裝置,并具有脈沖相加和線性門裝置,在每種同位素的最佳計數條件下同時測量它們,就能區分發射不同能量的同位素,假定有一個含有3H和
為了使雙標記測量獲得成功,兩種放射性同位素的β譜必須要有足夠的差異來滿足脈沖高度分析所要求的分離。在兩種同位素能譜過于接近的情況下,例如14C和35S,必須首先對它們進行同位素的化學分離,然后再分別計數。在雙標記測量中,較常用的成對同位素有3H和
5.液體閃爍計數樣品的制備
流體閃爍測量的櫚制備是很重要的操作,操作的成功與否,直接影響到計數效率。樣品制備方法的選擇要考慮以下四個因素:⑴所測樣品的物理和化學特性,決定所用閃爍液類型和決定是否需要將樣品轉化為更適于測量的形式;⑵樣品所含的同位素的種類,對于含3H的樣品要更加注意;⑶預計的放射性水平,在樣品的放射性強度低時,要求的制備方法比較嚴格;⑷制備過程的經濟和方便,尤其在樣品數量多的更為重要。其一般原則是必須使所制備的樣品的放射性,能在一個短的測量時間達到適當的統計學準度,最關鍵的是要求樣品制備過程中,盡可能地減少“淬滅”因素。
⑴均相樣品的制備
脂溶性樣品可直接加入甲苯、二甲苯系統的閃爍液,含水量小于3%的樣品,仍應用甲苯、二甲苯系統的閃爍液,但需加入乙醇或甲醇或乙二醇乙醚等極性溶劑助溶,助溶劑與甲苯的比例通常為3:7。必需時加抵消部分淬滅作用,提高計數效率,含水量再大時,最好采用100毫升乙二醇乙醚。20毫升乙二醇,
⑵非均相樣品的制備
①乳狀液計數:表面活化合物Triton X-100是廣泛應用的乳化劑,其化學結構式: 它的親水端吸引水和其它極性分子,疏水端吸引甲苯等非極性分子。乳狀液的物理性能隨著水分的增加而改變。當甲苯閃爍液與Triton X-100按2:1(v/v)組成的配方時,樣品水分在15%以下的乳狀液是透明的;隨著水分的增加,就會出現兩個不同的相,分相的乳狀液不穩定,不能用于測量;水分繼續增加,就形成穩定的乳狀液,此時液體是透明的或不透明的。乳狀液的分相與溫度有關,在溫度由
②懸浮液測量:對于在甲苯等為基礎的閃爍液中溶解度極低的無機鹽等樣品,可采用凝膠技術成懸浮測量液。樣品經初步處理后,制成相同大小的顆粒,然后在含有凝膠劑的系統中做成懸浮液。對于懸浮液測量,下列要求是必須的:①固體物質要很好地粉碎,并要求是白色或無色的均勻粉狀顆粒,以避免光的吸收;②要求樣品確實不溶于閃爍液,否則溶解的與不溶解的部分有不同的計數效率,造成計數不穩定,結果不易重復。懸浮液測量的優點是樣品不溶解在溶劑中,所以樣品淬滅極小。在懸浮測量中作為聚膠劑的物質有硬脂酸鋁、蓖麻油的衍生物(thixin)
及二氧化硅的細顆粒(Cab-o-sil)。含3.5 ̄4.0% Cab-o-sil的懸浮液,要以得到很高計數效率,Cab-o-sil還可以減少計數瓶壁對放射性吸附作用,一般制樣時,往往先加Cab-o-sil,再加入放射性樣品,使放射性更多地吸附在懸浮顆粒上而提高計數效率。懸浮液測量法除應用于固體無機鹽的測定外,也可用于水溶液和組織勻漿,還可用來測量薄層層析的放射性,應用時只要將層析物粉碎,簡單地與凝膠混合即可,如果待測物能部分地從層析支持物上被洗脫而溶于閃爍液,則此法不可使用。
③支持物測量:與懸浮液測量相似,凡不溶于閃爍液的樣品,可將它放置在支持物上再浸入閃爍液中進行計數。支持物的種類很多,如紙條、濾紙、玻璃纖維濾紙及醋酸纖維素膜片等。支持物在計數瓶內的位置對計數有直接影響,通常都采用平放瓶底測量,且膜片不超出閃爍液面,保持支持物和測量杯的干燥,都能獲得較高的計數效率和測量重復性。支持物測量除淬滅作用小外,還有一個突出的優越性,即一次測量可以黨綱較多的樣品。因在同一測量瓶內,隨膜片疊加數目的增加(10片之內),計數率線性增加而計數效率保持不變,這對于放射性水平低的含水樣品測量非常適用。\par 在上述幾種支持物中,以醋酸纖維素薄膜、玻璃纖維濾紙的效果優于普通濾紙,因為普通濾紙對光子傳播幾乎是不透明的,所以計數效率很低。
6.液體閃爍計數中的淬滅作用
放射能量在測量瓶內的傳遞和轉換過程越順利,測量效率越高。但事實上,影響能量傳遞過程順序進行的因素很多,它的每一環節都存在著對能量的爭奪過程,使得放射能減少,甚至發生能量傳遞的中斷,導致測量效率下降,這種現象稱為液體閃爍計數的淬滅。造成淬滅的因素很多,按淬滅性質歸納起來,有下列三種類型。
⑴化學淬滅
化學淬滅的產生,是由于被放射能激發的少量溶劑分子在分子運動中,與非激發的雜質、溶劑、溶質分子碰撞而將激發能發熱能形式消耗;瘜W淬滅的嚴重程度取決于淬滅物質的化學結構和濃度;瘜W淬滅與淬滅物濃度的關系是淬滅物質的濃度越大,淬滅作用越嚴重。例如,氧和水都是強淬滅劑,在常溫壓下,閃爍液都能溶介空氣中的氧,當氧的溶解量達到2×10
⑵顏色淬滅
由于顏色對光量子的吸收作用,使得帶顏色的閃爍液削弱了光子的亮度,也縮短了光量子的自由程,導致到達光陰極的光子數減少,造成計數效率下降。不同的顏色,淬滅作用程度不同,閃爍液熒光波長接近于紫外光,所以,顏色淬滅程度的順序為:蘭色〉黃色〉紅色。一些生物樣品,如血、尿等在制樣過程中,要進行脫色處理,如果支持物測量中,濾膜干燥時被烤黃,也會造成計數效率的嚴重下降。
⑶光子淬滅(又稱局部淬滅)
在非均相測量中,由于樣品本身的自吸收而使β射線能量在沒有傳遞給溶劑分子之前就消耗掉了,這種淬滅在均相測定中,因樣品處理不好,也會發生,謂之光子淬滅。前已述及,不同能量的放射性核素,在液體閃爍計數時,閃爍體給出的光子數不同,產生的電脈沖高度亦不同。如果由接近平均能量的
四、放射測量的注意事項
在放射測量過程中,以下幾個問題不應忽視:
1.任何測量放射性的計數方法都存在本底問題。所謂本底指被測樣品之外的信號輸出。因此,在測量到的樣品計數率中,要扣除本底計數率,才能獲得樣品的凈計數率,儀器本底越低,測量靈敏度越高,準確度也越高,這在3H標記物的低水平測量中尤為重要。
2.在放射性測量工作中,通常存在著三種誤差:①系統誤差;由于測量儀器本身或測量方法和程度的不合理以及周圍環境的影響因素,使測量結果單向偏離而造成的誤差。系統誤差產生的原因可以找到并能加以克服;②過失誤差,由于實驗工作者的主觀錯誤造成,是一種無規律可循的誤差,但過失誤差也是可以避免的;⑶統計誤差,由于放射性衰變本身的隨機性而導致的無法控制的誤差,它是放射性測量誤差中主要的、固有的來源。對于放射性測量統計誤差,在實際工作中,常通過提高計數效率,增加測量次數(以3 ̄5次為宜)或每個樣品做1 ̄2個平行管計數、合理分配測量時間等方法,以獲得最小的測量誤差。
3.在液體閃爍計數測量中,樣品中含有的水份、混入的雜質或帶有的等許多因素,都會使得放射能減少,甚至發生能量傳遞的中斷,而導致計數效率下降,即“淬滅”。在樣品制備過程中,應避免引起淬滅的因素,如果欲知櫚的真正放射量,并進行樣品間的相互比較,就需作淬滅校正,將cpm值換算成dpm值。常用的淬滅校正方法有稀釋法、內標準法、道比法、外標準道比法等等。但是最為關鍵是在樣品和測量過程中,盡可能地將淬滅因素減低到最小的程度.
常用同位素理化性質,檢測方法
單位換算
Curies 和 d . p . m 的換算.
1 Curie (Ci) =2.22×1012 d . p . m .
1 milliCurie (mCi) =2.22×109 d . p . m .
1 microCurie (m Ci) =2.22×106 d . p . m .
1 nanoCurie (nCi) = 2.22×103 d . p . m .
1 picoCurie (pCi) =2.22 d . p . m .
Curies 和 Becquerels的換算
1 Ci = 3.7×1010 Bq =37GBq (gigaBq)
1 mCi = 3.7×10 7 Bq =37MBq (megaBq)
1 GBq =2.7×10 -4 Ci =27.027mCi(milliCi)
1 MBq =2.7×10 -7 Ci =
1 kBq =2.7×10-10 Ci =27.027nCi (nanoCi)
產品名稱:REN400型X、γ、α、β、中子多功能輻射檢測儀
產品描述: REN400型多功能輻射檢測儀是以內置高靈敏度蓋格計數管為探測器,外接不同類型的探頭來實現對低劑量χ、γ射線,高劑量χ、γ射線,α、β射線和中子射線的檢測。作為多功能輻射巡測儀,能顯示工作場所的輻射值,自動連續測量和記錄1600條輻射劑量率數據,更換
產品名稱:REN510型便攜式γ譜儀
產品描述:REN510型便攜式γ譜儀主要用于安檢、反恐、核事故現場的污染分析,可進行γ輻射劑量的測量,同時系統內置核素庫,可以自動識別人工及天然同位素。儀器為一體式,內置2英寸NaI(Tl) γ探測器,可同時測量γ能譜、γ劑量率。儀器為全數字化,集探測器、成型放大器、多道分析器、電源、觸摸屏、內存為一體,功耗
產品名稱:REN800型中子周圍劑量當量(率)儀
產品描述: REN800型中子周圍劑量當量(率)儀采用高靈敏的進口He3管作為探測器,反應速度快。該儀器使用方便;靈敏度高、抗γ性能好、能量響應特性好,即可用作便攜式儀器又可用作固定式中子劑量監測儀。此外通過配套的RenRiNeutron中子劑量率管理軟件可將存
產品描述:REN600A型α、β、γ射線表面污染檢測儀即可檢測α、β、γ射線,也能檢測到X射線,它采用高速嵌入式微處器作為數據處理單元,點陣式大屏幕LCD液晶顯示,讀數清晰、操作方便,具有400條超大容量數據存儲。儀器采用進口的大面積MICA蓋革探測器,具有較高探測效率,可進行α、β輻射表面污染檢測和X、γ輻
產品名稱:REN500H輻射防護用X、γ輻射劑量當量(率)儀
產品描述:REN500H輻射防護用X、γ輻射劑量當量(率)儀是監測各種高劑量放射性工作場所的輻射劑量率專用儀器。儀器滿足《環境地表γ輻射劑量率測定規范》中高劑量部分的要求。該儀器除能測高能γ射線外,還能對低能X射線進行準確的測量,具有良好的能量響應特性。此外通過配套的RenRiRate劑量率管理軟件可將存儲的
產品描述:REN系列智能化輻射探頭均可和REN300、REN300A、REN300B系列主機配套使用,也可以單獨配套RenRiArea輻射區域監測軟件使用。且具有RS485/RS232的通訊能力。所有探頭均可單獨外接報警燈,在超閾值的情況下就地給出聲光報警。 1、測量射線類型:X、γ射線2、探測器:2個GM